63 research outputs found

    Mirror symmetrical transfer of perceptual learning by prism adaptation

    Get PDF
    AbstractRecent study of [Sugita, Y. (1996) Global plasticity in adult visual cortex following reversal of visual input. Nature, 380, 523–526.] demonstrated that prism adaptation to reversed retinal input generates the transfer of neuronal activities in monkey V1 to the opposite visual cortex. This raises the question if perceptual learning on one side of the visual field can transfer to the other side. We tested this in using the Gabor lateral masking paradigm. Before adaptation, long-range interaction was induced vertically on one side (i.e., the right) of the visual field with training (perceptual learning). Prism adaptation was achieved by wearing right-left reversing goggles. During adaptation period, perceptual learning transferred to a mirror symmetrical region across the vertical meridian. Results in the post adaptation period revealed that both learning and transfer persisted for over three months. These results provide direct evidence of transferred perceptual plasticity across the visual field, the underlying mechanism of which is supported by the mirror symmetrical connection between the right and left cortices

    Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    Get PDF
    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n=13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n=11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry. Our EEG asymmetry results suggest that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients, and that alpha-asymmetry EEG-nf would be compatible with the amygdala rtfMRI-nf. Combination of the two could enhance emotion regulation training and benefit MDD patients.Comment: 28 pages, 16 figures, to appear in NeuroImage: Clinica

    Individual Variations in Nucleus Accumbens Responses Associated with Major Depressive Disorder Symptoms

    Get PDF
    Abnormal reward-related responses in the nucleus accumbens (NAcc) have been reported for major depressive disorder (MDD) patients. However, variability exists in the reported results, which could be due to heterogeneity in neuropathology of depression. To parse the heterogeneity of MDD we investigated variation of NAcc responses to gain and loss anticipations using fMRI. We found NAcc responses to monetary gain and loss were significantly variable across subjects in both MDD and healthy control (HC) groups. The variations were seen as a hyperactive response subtype that showed elevated activation to the anticipation of both gain and loss, an intermediate response with greater activation to gain than loss, and a suppressed-activity with reduced activation to both gain and loss compared to a non-monetary condition. While these response variability were seen in both MDD and HC subjects, specific symptoms were significantly associated with the right NAcc variation in MDD. Both the hyper- and suppressed-activity subtypes of MDD patients had severe suicidal ideation and anhedonia symptoms. The intermediate subjects had less severity in these symptoms. These results suggest that differing propensities in reward responsiveness in the NAcc may affect the development of specific symptoms in MDD

    Network-dependent modulation of brain activity during sleep

    Get PDF
    AbstractBrain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks

    Real-time fMRI neurofeedback training of the amygdala activity with simultaneous EEG in veterans with combat-related PTSD

    Full text link
    Posttraumatic stress disorder (PTSD) is a chronic and disabling neuropsychiatric disorder characterized by insufficient top-down modulation of the amygdala activity by the prefrontal cortex. Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging method with potential for modifying the amygdala-prefrontal interactions. We report the first controlled emotion self-regulation study in veterans with combat-related PTSD utilizing rtfMRI-nf of the amygdala activity. PTSD patients in the experimental group (EG, n=20) learned to upregulate BOLD activity of the left amygdala (LA) using rtfMRI-nf during a happy emotion induction task. PTSD patients in the control group (CG, n=11) were provided with a sham rtfMRI-nf. The study included three rtfMRI-nf training sessions, and EEG recordings were performed simultaneously with fMRI. PTSD severity was assessed using the Clinician-Administered PTSD Scale (CAPS). The EG participants showed a significant reduction in total CAPS ratings, including significant reductions in avoidance and hyperarousal symptoms. Overall, 80% of the EG participants demonstrated clinically meaningful reductions in CAPS ratings, compared to 38% in the CG. During the first session, fMRI connectivity of the LA with the orbitofrontal cortex and the dorsolateral prefrontal cortex (DLPFC) was progressively enhanced, and this enhancement significantly and positively correlated with initial CAPS ratings. Left-lateralized enhancement in upper alpha EEG coherence also exhibited a significant positive correlation with the initial CAPS. Reduction in PTSD severity between the first and last rtfMRI-nf sessions significantly correlated with enhancement in functional connectivity between the LA and the left DLPFC. Our results demonstrate that the rtfMRI-nf of the amygdala activity has the potential to correct the amygdala-prefrontal functional connectivity deficiencies specific to PTSD.Comment: 26 pages, 16 figures, to appear in NeuroImage: Clinica

    Integration of Simultaneous Resting-State EEG, fMRI, and Eye Tracker Methods to Determine and Verify EEG Vigilance Measure

    Full text link
    Resting-state functional magnetic resonance imaging (rsfMRI) has been widely used for studying the (presumably) awake and alert human brain. Although rsfMRI scans are typically collected while individuals are instructed to focus their eyes on a fixation cross, objective and verified experimental measures to quantify degree of alertness (e.g., vigilance) are not readily available. Concurrent electroencephalography and fMRI (EEG-fMRI) measurements are also widely used to study human brain with high spatial/temporal resolution. EEG is the modality extensively used for estimating vigilance during eyes-closed resting state. On the other hand, pupil size measured using an eye-tracker device could provide an indirect index of vigilance. In this study, we investigated whether simultaneous multimodal EEG-fMRI combined with eye-tracker measurements can be used to determine EEG signal feature associated with pupil size changes (e.g., vigilance measure) in healthy human subjects (n=10) during brain rest with eyes open. We found that EEG frontal and occipital beta power (FOBP) correlates with pupil size changes, an indirect index for locus coeruleus activity implicated in vigilance regulation (r=0.306, p<0.001). Moreover, FOBP also correlated with heart rate (r=0.255, p<0.001), as well as several brain regions in the anti-correlated network, including the bilateral insula and inferior parietal lobule. These results support the conclusion that FOBP is an objective measure of vigilance in healthy human subjects
    • …
    corecore